

Welcome to CyPhyHouse’s documentation!

[image: License]
[image: Documentation Status]
 [https://cyphyhouse.readthedocs.io/en/latest/?badge=latest]This website is the technical documentation for the CyPhyHouse project.
For a non-technical overview and research papers of the CyPhyHouse project,
please visit our project website at https://cyphyhouse.github.io/.

Users are expected to familiarize themselves with Robot Operating System (ROS)
and Gazebo simulation environment in order to use the software stack provide in
CyPhyHouse project.
We recommend beginners to at least walk through the tutorials in
http://wiki.ros.org/ before trying out our software.

Demo

Todo

Add demo videos and mention each component

Contents

	Project Architecture
	Software Components

	Interfaces

	Hardware Devices

	Configuration Files
	User specified Global Configurations

	Auto-generated Agent Local Configurations

	Koord Programming Framework
	Quick start using JAR package

	Compile JAR package from source code

	Cymulator: ROS-Gazebo based Simulator
	Installation

	Usage

Project Architecture

Software Components

[image: ../_images/image.png]

Interfaces

See Predefined ROS Topics.

Koord Language Compiler

	Java + ANTLR

CyPyHous3 Middleware

	Python 3.5.2 + ROS + OMPL

	ROS for communication with hardware controllers

	OMPL for path planning

Hardware Controller

	C++ + ROS

Simulator and Visualizer

	Python 3.5.2 + Gazebo

Device Discovery and Launch

	Python 3.5.2

BEST Effort Safe Termination

	C++

Todo

Link to each repository?
Version and packages for C++ and Java.
Diagrams and interfaces?

Hardware Devices

F1/10

Drone

Todo

Fill in short descriptions for each device

Predefined ROS Topics

Shared between Simulation and Deployment

waypoint geometry_msgs/PoseStamped
waypoint_tobest geometry_msgs/PoseStamped # Not used yet
reached std_msgs/String

Topic names are all lower cases by convention.
Note that the topics are not global names.
For deployment, we can specify environment variable ROS_NAMESPACE for each
device so that ros_launch will append a prefix to the topics.
That is the topic at runtime becomes /{ROS_NAMESPACE}/waypoint.
ROS_NAMESPACE should be set with an unique ROS name such as IP with port.

In the simulator, *.launch is auto-generated.
We explicitly generate a namespace for each simulated agent.
E.g., the topic waypoint becomes /{AGENTID}/waypoint in simulation
with the unique AGENTID as the namespace.

See Remapping Arguments [http://wiki.ros.org/action/fullsearch/Remapping%20Arguments] for more detail.

Simulation only

Drone Specific

/drone{id}/ground_truth/state nav_msgs/Odometry
/drone{id}/cmd_vel geometry_msgs/Twist
/drone{id}/goals std_msgs/Float32MultiArray

Car Specific

/car{id}/racecar/left_rear_wheel_velocity_controller/command std_msgs/Float64
/car{id}/racecar/right_rear_wheel_velocity_controller/command std_msgs/Float64
/car{id}/racecar/left_front_wheel_velocity_controller/command std_msgs/Float64
/car{id}/racecar/right_front_wheel_velocity_controller/command std_msgs/Float64
/car{id}/racecar/left_steering_hinge_position_controller/command std_msgs/Float64
/car{id}/racecar/right_steering_hinge_position_controller/command std_msgs/Float64

goto.py
/car{id}/ground_truth/state nav_msgs/Odometry
/car{id}/goals std_msgs/Float32MultiArray

ackermann_car.py
/car{id}/ackermann_cmd ackermann_msgs/AckermannDriveStamped

Deployment only

Vicon

/vrpn_client_node/{vicon_obj}/pose geometry_msgs/PoseStamped
/vrpn_client_node/{vicon_obj}/twist geometry_msgs/TwistStamped

Drone Specific

/mavros/cmd/arming mavros_msgs/CommandBool
/mavros/cmd/takeoff mavros_msgs/CommandTOL
/mavros/cmd/land mavros_msgs/CommandTOL
/mavros/set_mode mavros_msgs/SetMode
/mavros/setpoint_position/local geometry_msgs/PoseStamped
/mavros/cmd/set_home mavros_msgs/CommandHome

Car Specific

/ackermann_cmd ackermann_msgs/AckermannDriveStamped

Configuration Files

User specified Global Configurations

Example global configuration file

leader_pid: 1
mutex_handler: BaseMutexHandler
udp_bcast_ip: 127.255.255.255
udp_port: 61820
agents:
 - pid: 0
 on_device: drone0
 motion_automaton: MoatTestDrone
 - pid: 1
 on_device: drone1
 motion_automaton: MoatTestDrone
 - pid: 2
 on_device: drone2
 motion_automaton: MoatTestDrone
 - pid: 3
 on_device: hotdec_car
 motion_automaton: MoatTestCar

devices:
 hotdec_car:
 bot_type: CAR
 ip: 127.0.1.0
 ros_node_prefix: 'waypoint_node'
 queue_size: 1
 motion: &cym_moat_car # Set anchor for reusing
 waypoint_topic:
 topic: 'waypoint'
 type: PoseStamped # geometry_msgs/PoseStamped
 reached_topic:
 topic: 'reached'
 type: String # std_msgs/String
 positioning_topic:
 topic: '/vrpn_client_node/' # TODO '"/vrpn_client_node/" + vicon_obj + "/pose"'
 type: PoseStamped # geometry_msgs/PoseStamped
 planner: SimplePlanner
 motion_automata: [MoatTestCar]

 f1car:
 bot_type: CAR
 ip: 127.0.1.1
 motion: *cym_moat_car # Reuse car motion configs

 drone0:
 bot_type: QUAD
 ip: 127.0.2.0
 motion: &cym_moat_drone # Set anchor for reusing
 ros_node_prefix: 'waypoint_node'
 queue_size: 1
 waypoint_topic:
 topic: 'waypoint'
 type: PoseStamped # geometry_msgs/PoseStamped
 reached_topic:
 topic: 'reached'
 type: String # std_msgs/String
 positioning_topic:
 topic: '/vrpn_client_node/' # TODO '"/vrpn_client_node/" + vicon_obj + "/pose"'
 type: PoseStamped # geometry_msgs/PoseStamped
 planner: SimplePlanner
 motion_automata: [MoatTestDrone]

 drone1:
 bot_type: QUAD
 ip: 127.0.2.1
 motion: *cym_moat_drone # Reuse car motion configs

 drone2:
 bot_type: QUAD
 ip: 127.0.2.2
 motion: *cym_moat_drone

Auto-generated Agent Local Configurations

Example local configuration file for one of the agents.

agent:
 motion_automaton: MoatTestDrone
 on_device: drone1
 pid: 1
device:
 bot_name: drone1
 bot_type: QUAD
 ip: 127.0.2.1
 motion_automata: [MoatTestDrone]
 planner: SimplePlanner
 port: 61820
 positioning_topic: {topic: /vrpn_client_node/, type: PoseStamped}
 queue_size: 1
 reached_topic: {topic: reached, type: String}
 ros_node_prefix: drone1/waypoint_node
 waypoint_topic: {topic: waypoint, type: PoseStamped}
leader_pid: 1
mutex_handler: BaseMutexHandler
num_agents: 4
udp_bcast_ip: 127.255.255.255
udp_port: 61820

Todo

Include usage of gen_local_config script to generate a local config from
the global config

Koord Programming Framework

The Koord language is a new language for coordination in bots.

TODO briefly introduce and show example Koord code

Quick start using JAR package

Requirements

	Java Runtime Environment 11 (JRE 11) or above

	Download the JAR file koord-*-jar-with-dependencies.jar from one of our
releases [https://github.com/cyphyhouse/KoordLanguage/releases] (or compile from source code)

Usage

Given a Koord program app.krd, run the following command to generate Python code
app.py:

$ java -jar /path/to/koord-*-jar-with-dependencies.jar app.krd app.py

Compile JAR package from source code

Requirements

	Java Development Kit 12 (JDK 12)

	Maven

	Python 3.5 or above for testing

Compilation

The parser is written in Java and uses Antlr.
This project uses Maven.

Run following command to build and test the JAR package file:

$ mvn package

The created JAR file should be under target folder following the name
pattern koord-*-jar-with-dependencies.jar.
With the JAR file, please follow the instructions in the previous section to run
Koord compiler.

Koord Language

	Syntax References

	Semantics

Koord Compiler

	Parser

	Generation

	Sensors and Actuators

	Variables

	Others

	Example

	Program Analysis

Syntax References

Koord is language that is focused on events and reacting to them. It uses significant whitespace similar to python.

A koord file consists of five main sections:

	Definitions

	Modules

	Variable Declarations

	Initiation

	Events

These sections must be declared in this order.

Definitions

The definitions blocks consists of function declarations.

Modules

The modules sections declares sensors and actuators that are to be used.
Variables can either be an actuator or a sensor, must be declared in the respective block.
Module names must begin with a capital letter.
For instance, using the module Motion:

using Motion:
 actuators:
 pos target
 sensors:
 boolean done

Known Modules

Motion

using Motion:
 actuators:
 pos target
 sensors:
 boolean done

Log:

using Log:
 actuators:
 stream stdout
 sensors:
 stream stdin

To use streams, the << syntax is needed.

stdout << "Hello World"

Variable Declaration

Variables must either be declared as local, allread or allwrite.

Variables need to have a type and must start with a lower case letter.
Variables may also be given an initial value.

Local

Local means that a variable cannot be seen by other bots, it can only be seen by the bot with the variable.

Allread

allread means that other bots may read from the variable, but other bots may not write to the variable.
The variable owner may still write to the bot. To declare an allread variable, it must be declared as an array.
A read requires array access, with the index representing the id of the bot. An allread variable can only be written to
by using the syntax varname[pid] = ..., and will not accept syntax that should be the same thing, such as
varname[pid * 1] = ...

All Write

allwrite means any bot may write to the variable.

Example

allwrite:
 int a
 boolean b

allread:
 int[] c
 int[] d

local:
 int e
 float f

Events

Events consist of a label, a pre condition, and an effect. A precondition must be a boolean value.
The precondution must be on the same line as the pre: label.

dosomething:
 pre:true
 eff:
 hello()

Types

	pos

	boolean

	int

	float

	stream

	arrays

Control Flow

Conditional

Koord supports if and if else statements. To use elif, do a nested if else.

Loops

Koord supports constant iteration for loops. Koord does not support
while loops.

Example:

for i = 0, 5:
 doSomething()

Example Code

	Log

	Lineform

	Hvac

	Shapeform

Semantics

Distributed Shared Memory

When variables are dcelared allread and allwrite, they are in shared memory.
All robots can read and write to allwrite variables and all robots can read from allread
variables. allread variables need to be arrays.
A robot can only write to one element of an allread variable.

Round based Execution

A program will find the first event that satisfies
the precondition, execute it, then start from the top again.

Parser

The parser uses Antlr. Maven should look at the
grammar file and generate the parser
to target/generate-sources.

The parser then creates KoordParser.<GrammarNode>Context classes,
which are used along with the KoordBaseListener class
and the tree walker class to traverse the AST.

Generation

A Koord program is compiled into a python file.

There are two main components: initiation and events.

The initiation is handled by the function initialize_vars and contains setup for variables and the code for the
init block.

The events are handled by the function loop_body and is meant to be called in
a loop. It finds the first event that satisfies its precondition, executes the code
and then returns.

Sensors and Actuators

Sensors and actuators get compiled to self.read_from_sensor(sensor_name) and
self.write_to_actuator(actuator_name, value), which inherit from the parent class.

Variables

Local variables get compiled to self.locals[local_variable].

Shared variables require distributed memory, so they get compiled to calls to
self.write_to_shared(var_name, index, value) and self.read_from_shared(var_name, index)
which also inherit from the parent class allow it to do distributed memory stuff.

Others

Many other things, such as arithmetic operators and constants,
are the same in both python and koord, and do not get transformed at all.

Example

Koord:

allwrite:
 int sum = 0
 int numadded = 0
local:
 boolean added = false
 int finalsum

adding:
 pre: !added
 eff :
 atomic:
 sum = sum + pid * 2
 numadded = numadded + 1
 added = true
finalsum:
 pre: numadded == numAgents
 eff :
 finalsum = sum

Generated Python:

from agentThread import AgentThread

class DefaultName(AgentThread):

 def __init__(self, config):
 super(DefaultName, self).__init__(config)
 self.start()

 def initialize_vars(self):
 self.locals = {}
 self.locals['added'] = False
 self.locals['finalsum'] = None
 self.create_aw_var('sum', int, 0)
 self.create_aw_var('numadded', int, 0)

 def loop_body(self):
 if not self.locals['added']:
 if not self.lock():
 return
 self.write_to_shared('sum', None, self.read_from_shared('sum', None) + self.pid() * 2)
 self.write_to_shared('numadded', None, self.read_from_shared('numadded', None) + 1)
 self.locals['added'] = True
 self.unlock()
 return
 if self.read_from_shared('numadded', None) == self.num_agents():
 self.locals['finalsum'] = self.read_from_shared('sum', None)
 return

Program Analysis

Control Flow Graph

Control flow is handled by the class BasicBlock. It
has two outgoing arrows if it ends in a conditional statement,
and one outgoing arrow if it is a “merge” block.

Timing Analysis

Timing analysis is done by the algorithm
worstPath(block) = cost(block) + max(worstPath(block.left), worstPath(block.right))
with base case being worstPath(block) = cost(block) if it is a leaf node.

Cymulator: ROS-Gazebo based Simulator

Installation

The installation steps below are also assembled in this shell script that should work for Ubuntu 16.04.
These commands requires sudo permission. Please run them with caution.

	Install ROS Kinetic and create a workspace for catkin. We assume it is under catkin_ws.

	ROS Kinetic Ubuntu [http://wiki.ros.org/kinetic/Installation/Ubuntu]

	Creating a workspace for catkin [http://wiki.ros.org/catkin/Tutorials/create_a_workspace]

	Install Gazebo 9 for ROS Kinetic

sudo sh -c 'echo "deb http://packages.osrfoundation.org/gazebo/ubuntu-stable `lsb_release -cs` main" > /etc/apt/sources.list.d/gazebo-stable.list'
wget http://packages.osrfoundation.org/gazebo.key -O - | sudo apt-key add -
sudo apt-get update
sudo apt install -y \
 ros-kinetic-gazebo9-ros ros-kinetic-gazebo9-ros-control \
 ros-kinetic-gazebo9-plugins ros-kinetic-gazebo9-ros-pkgs

	Install required ROS packages available on APT

sudo apt install -y \
 ros-kinetic-ackermann-msgs ros-kinetic-geographic-msgs ros-kinetic-serial \
 ros-kinetic-ros-control ros-kinetic-ros-controllers \
 ros-kinetic-hector-localization ros-kinetic-hector-models \
 ros-kinetic-geometry2 ros-kinetic-robot

	Install other system packages available on APT

sudo apt install -y git
sudo apt install -y cppad coinor-libipopt-dev # For MPC controller
sudo apt install -y python3 python3-pip

	Install required Python packages available on PyPI

pip3 install --user pip --upgrade
pip3 install --user \
 catkin_pkg rospkg \
 empy numpy scipy \
 defusedxml netifaces \
 pathlib pyyaml

	Inside the catkin_ws/src directory of your catkin workspace clone the following repos:

git clone https://github.com/tu-darmstadt-ros-pkg/hector_quadrotor.git --branch kinetic-devel
git clone https://github.com/tu-darmstadt-ros-pkg/hector_gazebo.git --branch kinetic-devel
git clone https://github.com/cyphyhouse/racecar.git --branch RacecarJTransitory
git clone https://github.com/cyphyhouse/racecar_gazebo.git --branch master
git clone https://github.com/cyphyhouse/Decawave.git --branch for-cymulator
git clone https://github.com/cyphyhouse/Cymulator.git --branch master

Compile using catkin_make

	Run these commands under your catkin_ws directory to compile relevant ROS packages in the cloned repositories.

source /opt/ros/kinetic/setup.bash
catkin_make --only-pkg-with-deps cym_gazebo --cmake-args -DPYTHON_VERSION=3.5 # Build only cym_gazebo with Python>=3.5

Compile using colcon

	Run these commands under your catkin_ws directory to compile only relevant ROS packages in catkin_ws/src.

source /opt/ros/kinetic/setup.bash
colcon build --base-paths src/* --packages-up-to cym_gazebo --cmake-args -DPYTHON_VERSION=3.5

Usage

rosrun cym_gazebo cymulate.py scenes/empty-1_car.yml

Todo

Add sample YAML file for scenes and explain shell commands that start the Gazebo simulation

Index

Cymulator: Gazebo based Simulator for CyPhyHouse

[image: License]
Cymulator is a Gazebo [http://gazebosim.org/] based simulation environment for CyPhyHouse
project. In Cymulator, the same distributed Koord [https://github.com/cyphyhouse/KoordLanguage] program along with our middleware [https://github.com/cyphyhouse/CyPyHous3] can be
deployed to multiple simulated drones and cars in Gazebo simulator. You can test
and visualize your distributed robot control algorithms without buying drones
and cars!

Website and Documentation

Cymulator is part of the CyPhyHouse project and currently not executable as a
standalone application. Please visit following websites for detail usage.

Broad overview of CyPhyHouse project is available at:

https://cyphyhouse.github.io/

Or you can visit our website for documentation:

https://cyphyhouse.rtfd.io/

License

Cymulator is licensed under the terms of the NCSA License (see the file
LICENSE).

Installation

The installation steps below are also assembled in this shell script that should work for Ubuntu 16.04.
These commands requires sudo permission. Please run them with caution.

	Install ROS Kinetic and create a workspace for catkin. We assume it is under catkin_ws.

	ROS Kinetic Ubuntu [http://wiki.ros.org/kinetic/Installation/Ubuntu]

	Creating a workspace for catkin [http://wiki.ros.org/catkin/Tutorials/create_a_workspace]

	Install Gazebo 9 for ROS Kinetic

sudo sh -c 'echo "deb http://packages.osrfoundation.org/gazebo/ubuntu-stable `lsb_release -cs` main" > /etc/apt/sources.list.d/gazebo-stable.list'
wget http://packages.osrfoundation.org/gazebo.key -O - | sudo apt-key add -
sudo apt-get update
sudo apt install -y \
 ros-kinetic-gazebo9-ros ros-kinetic-gazebo9-ros-control \
 ros-kinetic-gazebo9-plugins ros-kinetic-gazebo9-ros-pkgs

	Install required ROS packages available on APT

sudo apt install -y \
 ros-kinetic-ackermann-msgs ros-kinetic-geographic-msgs ros-kinetic-serial \
 ros-kinetic-ros-control ros-kinetic-ros-controllers \
 ros-kinetic-hector-localization ros-kinetic-hector-models \
 ros-kinetic-geometry2 ros-kinetic-robot

	Install other system packages available on APT

sudo apt install -y git
sudo apt install -y cppad coinor-libipopt-dev # For MPC controller
sudo apt install -y python3 python3-pip

	Install required Python packages available on PyPI

pip3 install --user pip --upgrade
pip3 install --user \
 catkin_pkg rospkg \
 empy numpy scipy \
 defusedxml netifaces \
 pathlib pyyaml

	Inside the catkin_ws/src directory of your catkin workspace clone the following repos:

git clone https://github.com/tu-darmstadt-ros-pkg/hector_quadrotor.git --branch kinetic-devel
git clone https://github.com/tu-darmstadt-ros-pkg/hector_gazebo.git --branch kinetic-devel
git clone https://github.com/cyphyhouse/racecar.git --branch RacecarJTransitory
git clone https://github.com/cyphyhouse/racecar_gazebo.git --branch master
git clone https://github.com/cyphyhouse/Decawave.git --branch for-cymulator
git clone https://github.com/cyphyhouse/Cymulator.git --branch master

Compile using catkin_make

	Run these commands under your catkin_ws directory to compile relevant ROS packages in the cloned repositories.

source /opt/ros/kinetic/setup.bash
catkin_make --only-pkg-with-deps cym_gazebo --cmake-args -DPYTHON_VERSION=3.5 # Build only cym_gazebo with Python>=3.5

Compile using colcon

	Run these commands under your catkin_ws directory to compile only relevant ROS packages in catkin_ws/src.

source /opt/ros/kinetic/setup.bash
colcon build --base-paths src/* --packages-up-to cym_gazebo --cmake-args -DPYTHON_VERSION=3.5

KoordLanguage

[image: License]

Build Status master: [image: Build status for master branch] [https://travis-ci.org/cyphyhouse/KoordLanguage/branches] latest commit: [image: Build status for latest commit] [https://travis-ci.org/cyphyhouse/KoordLanguage]

KoordLanguage is the front-end for the CyPhyHouse [https://cyphyhouse.github.io/] project.
KoordLanguage consists of our Koord programming language for distributed
robotic applications as well as the tools for compilation, analysis, and
optimizations.

Website and Documentation

KoordLanguage is part of the CyPhyHouse project, and Koord programs require
other components to be deployed to hardware devices or tested in simulation.
Please visit following websites for detail usages.

Broad overview of CyPhyHouse project is available at:

https://cyphyhouse.github.io/

Or you can find the documentation at:

https://cyphyhouse.rtfd.io/

License

KoordLanguage is licensed under the terms of the NCSA License (see the file
LICENSE).

Quick start using JAR package

Requirements

	Java Runtime Environment 11 (JRE 11) or above

	Download the JAR file koord-*-jar-with-dependencies.jar from one of our
releases [https://github.com/cyphyhouse/KoordLanguage/releases] (or compile from source code)

Usage

Given a Koord program app.krd, run the following command to generate Python code
app.py:

$ java -jar /path/to/koord-*-jar-with-dependencies.jar app.krd app.py

Compile JAR package from source code

Requirements

	Java Development Kit 12 (JDK 12)

	Maven

	Python 3.5 or above for testing

Compilation

The parser is written in Java and uses Antlr.
This project uses Maven.

Run following command to build and test the JAR package file:

$ mvn package

The created JAR file should be under target folder following the name
pattern koord-*-jar-with-dependencies.jar.
With the JAR file, please follow the instructions in the previous section to run
Koord compiler.

 _static/up-pressed.png

_static/up.png

_images/image.png
O Koord Program
Y

[Koord Compiler T | I

Compiled Agent Code

Shared Mem I_Per Device I R
btw agents Python APIs v
CyPyHous3 Launch
O Middleware ¥ Client

)

\

\\
Actuator N
ROS Topic

BEST

Safe Actuator,
ROS Topic

Device Specific
Hardware Controller

N Sensor
OS Topic

«---p| Cymulator T |

e, ————

I
I
I
J

S — -

Device
Position

v

Runtime Monitor
and Visualizer

_static/ajax-loader.gif

_static/comment-bright.png

nav.xhtml

 Table of Contents

 		
 Welcome to CyPhyHouse’s documentation!

 		
 Project Architecture

 		
 Software Components

 		
 Interfaces

 		
 Hardware Devices

 		
 Configuration Files

 		
 User specified Global Configurations

 		
 Auto-generated Agent Local Configurations

 		
 Koord Programming Framework

 		
 Quick start using JAR package

 		
 Requirements

 		
 Usage

 		
 Compile JAR package from source code

 		
 Requirements

 		
 Compilation

 		
 Cymulator: ROS-Gazebo based Simulator

 		
 Installation

 		
 Compile using catkin_make

 		
 Compile using colcon

 		
 Usage

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

